

Introduction of CREST Model

Xianwu Xue April 2nd 2012

Table of Contents

- What is CREST Model
- Flowchart of CREST
- CREST v2.0

What is CREST Model

HyDrometeorology and RemOte Sensing Laboratory (hydro.ou.edu)

CREST Model

HyDrometeorology and RemOte Sensing Laboratory (hydro.ou.edu)

- CREST Model is the abbreviation of <u>C</u>oupled <u>R</u>outing and <u>E</u>xcess <u>ST</u>orage (CREST) Distributed Hydrological Model
- CREST is jointly developed by the University of Oklahoma and NASA SERVIR
- CREST is a distributed hydrological model, developed to simulate the **spatial** and **temporal** variation of land surface and subsurface water fluxes and storages by cell-to-cell simulation

Wang, J., Y. Hong, L. Li, et al. (2011), The coupled routing and excess storage (CREST) distributed hydrological model, Hydrological Sciences Journal, 56(1), 84 - 98.

CREST's Distinguishing characteristics

- Distributed rainfall-runoff generation and cell-to-cell simulation
- Coupling between the runoff generation and routing components via three feedback mechanisms
- Scalability through the representation of soil moisture variability (using a variable infiltration curve) and routing processes (using linear reservoirs) at the sub-grid scale
- Easy to use and simulate effectively

NAS

CREST Model Input

CREST Model

Actual ET Output

•Amount of liquid that actually evapotranspirated from the precipitation and soil

Latest 24h/3h Actual ET (mm/h) 2012-03-19 09h

UU.

Issues of CREST v1.6c

Earlier, we had CREST v1.6c, now, we run CREST v2.0

- Only inputs uniform parameters' value
- Only calibrated the uniform parameters dataset
- Auto-calibrated the parameters slowly
- Did not use the matrix Manipulation, inefficient
- Was not flexible when it outputs the results
- Was difficult to add new processes by the beginners

Challenges for the next version of CREST

- Input the distributed parameters
- Calibration of the distributed parameters
- Need output for more state variables, and any locations and the specified date time
- Modular design to incorporate modification of the model using few lines of codes
- More flexible input files format

CREST v2.0

CREST v2.0

- 2 Forcing Data (Rainfall, PET)
- 11 Parameters

11 Outputs
available for
Any Time Steps
and Any
Locations

Modular design framework of CREST v2.0 (Inputs)

HyDrometeorology and RemOte Sensing Laboratory (hydro.ou.edu)

Modular design framework of CREST v2.0 (Simulation)

HyDrometeorology and RemOte Sensing Laboratory (hydro.ou.edu)

Modular design framework of CREST v2.0 (Outputs)

Π'

Modular design framework of CREST v2.0 (Modes)

Π

Modular design framework of CREST v2.0

HyDrometeorology and RemOte Sensing Laboratory (hydro.ou.edu)

NASA

UU

Flowchart of Running CREST

HyDrometeorology and RemOte Sensing Laboratory (hydro.ou.edu)

Organization of the Files

HyDrometeorology and RemOte Sensing Laboratory (hydro.ou.edu)

Flow Direction (FDR) Method

Most of the software/Data use this method, like ArcGIS and HYDROSHEDS

CREST v2.0 Inputs and Outputs

The Main Features of CREST v2.0

- Modular framework to easily understand, modify and add new processes for a particular application
- Include both uniform and distributed parameters for simulation and calibration
- Integrate CREST with SCE-UA to improve the CREST Calibration Capability
- Use matrix manipulation to accelerate the simulation speed
- Output more data for modelers

*(R) refers to Research Task

Thank you for your attention!

Any questions and/ or comments?

